
NASA Technical Memorandum

ICOMP-91-28; CMOTT-91-11

105376

Elliptic Flow Computation by Low
Reynolds Number Two-Equation
Turbulence Models

\

I

V. Michelassi and T.-H. Shih

Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition

Lewis Research Center

Cleveland, Ohio

ill, L t ':

December 1991

fil/ A





Elliptic Flow Computation by Low Reynolds

Number Two-Equation Turbulence Models

V. Michelassi* and T.-H. Shih

Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition
Lewis Research Center

Cleveland, Ohio 44135

Abstract

A detailed comparison of ten low-Reynolds-number k - _ models is carried

out. The flow solver, based on an implicit approximate factotization method, is

designed for incompressible, steady two-dimensionM flows. The conservation of

mass is enforced by the artificial compressibility approach and the computational

domain is discretized using centered finite differences. The turbulence model

predictions of the flow past a hill are compared with experiments at Re = 1.4.
10e. The effects of the grid spacing together with the numerical emciency of

the various formulations are investigated. The results show that the models

provide a satisfactory prediction of the flow field in the presence of a favourable

pressure gradient, while the accuracy rapidly deteriorates when a strong adverse

pressure gradient is encountered. A newly proposed model form that does not

explicitly depend on the wall distance seems promising for application to complex

geometries.

1 Introduction

The direct numerical simulation (DNS) of turbulent flows[13] is restricted to simple

configurations and low Reynolds numbers (Re) because of the speed and memory lim-

itations of supercomputers. A valid alternative, given by the Reynolds averaging tech-

nique of the Navier-Stokes equations with a model of Reynolds-stress, allows solving

engineering problems with a manageable computer effort. Following the Boussinesq

assumption, the Reynolds stresses are proportional to the mean velocity strain:

[ov_ (1)
- uiuj = ut _, O_i + O_ej] - 3
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1 3
in which k = _ _i=l ulul is the turbulent kinetic energy, ui the fluctuating velocity, U_

the mean velocity, _t is the so called turbulent viscosity, and the overbar stands for the
average operator. The problem now is how to determine yr. With the local velocity
and length scale of turbulence, vt can be modeled by the Kolmogorov expression:

k 2

= (2)
E

in which e = uuisul.j is the dissipation rate of turbulent kinetic energy. The quantities

k and e will be determined by corresponding transport equations.
This approach has been applied to a very wide class of two dimensional and three

dimensional compressible and incompressible flows[20]. Most of the applications use
the high Re form of the turbulence models in which the effect of molec_ar viscosity
is neglected and the presence of solid walls is accounted for by means of so called
wall functions[Ill. The model equations have been tuned using a set of experimental
channel data obtained in the absence of strong pressure gradient.

As pointed out by Bradshaw[3], the effect of streamline curvature, induced by a
pressure gradient not aligned with the main flow direction, is not properly accounted
for in these models. Problems are even more evident in the case of separation since

the wall function approach is strictly valid only for attached shear layers provided
that the turbulence is in local equilibrium in the wall proximity. Several authors,
among them Rodi and Scheuerer [22], showed that standard two equation models
fail to reproduce the correct flow pattern in the case of adverse pressure gradients.
Although the limitations of these models are well known, their better performance
may be obtained by proper modeling of the viscous and buffer layers, which are usually
bridged by wall functions.

With this in mind new formulations of the two-equation models, called low Re
forms (LR) have been introduced in the past several decades. These models ac-
count for the molecular viscosity which is not negligible in wall regions, the normal
velocity fluctuation damping induced by a solid boundary, and the presence of a
anisotropic contribution to the dissipation rate of turbulence that dominates in the

viscous layer[19, 24]. In the LR models the turbulence quantities are solved through-
out the viscous and buffer layers thereby accounting for convection and diffusion in
the molecular viscosity dominated region. The LR forms have been further tuned to
fit the experimental data in the viscous and buffer layers, but, because of the difficul-
ties in performing measurements in the wall proximity, the models have been often
made to reproduce measurements with a very wide uncertainty range. Thanks to the
recent availability of DNS results, although limited to very simple flows and quite
low Reynolds numbers, it has been possible to formulate new LR models that are con-

sistent with these numerical data sets. In a previous study by the authors[17], a new
model has been compared with several other LR forms. The preliminary investigation
was carried out by comparing the model predictions with DNS of a fully developed
channel flow. In the present paper the attention will be focused on LR forms applied
to a more complex geometry in the presence of streamline curvature and separation
to highlight the differences in the various models. From a computational point of
view it is important to observe that this investigation is carried out using a single
solver able to cope with all the models thereby ensuring the same degree of accuracy



in the solution of the various model equations. Together with the turbulence models,

the implicit solver will be briefly described in the following.

2 Selection of the k- eLR models

The investigation carried out in ref.[17] includes ten models which are: Chien[4], (ch),

Jones and Latmder[9], (jl), Nagano and nishida[18], (nh), Coakley[6], (co), Speziale
et al.[25], (sp), Kim[8], (k/), Rodi[21], (ro), Lam and Bremhorst[10], (/b), Shih[23],
(sh), Michelassi and Shih[17], (ms). The letter codes in parenthesis will be used to
refer to each model. All these models are further tested in this study.

It is possible to express the LR models in a unified form using the following
nondimensional variables (the overbar stands for a nondimensional quantity):

k e L vt -- U z_
----U2 e= U_ vt = v U-- --U x-i -- L

in which U is a typical velocity, L is a typical length, and v is the fluid molecular
viscosity. Accordingly, the flow Reynolds number is defined as:

LU
//e-

z/

Hereafter the variables will appear only in their nondimensional form so that the
overbar will be dropped for simplicity. The turbulence model transport equations
may be written as follows:

in which

ok _ 1 o 1+_ ok_

-_ + o_, =_(_( _kl a=,j + P - _ + D + II
(3)

P-- Re vt \Ozj \Oz, + Ozj]

is the production rate, and
k2

= %/. _ (4)
6

is the Kolmogorov expression for the turbulent viscosity modified by including the

function ]#. The extra terms D, E, II represent the corrections to the standard
high Re formulation. They allow balancing the transport equations (3) in the wall
region[19]. Their detailed forms are listed in Table 2, and here,

_--e-D (5)

In the q -w model (q = V_, w = _) and the k - r model (r = /*7), the transport
equations of w and r are introduced instead of the e equation.

The ro two-equation and ki four-equation models are two-layer models in which
an inner layer is defined close to the wall (y+ < 100) where, while using a transport
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Table 1: Damping functions in the LR forms

equation to compute the turbulent kinetic energy, the dissipation rate is computed
by an algebraic expression which is a function of the wall distance y and turbulent
kinetic energy k. This choice allows removing most of the numerical problems usually
connected with the LR forms in the wall region. However, the two-layer models have
to properly deal with the problem of matching the inner layer with the outer layer
in which different sets of equations hold. ki and ro use similar criteria to pass from
the inner layer to the outer layer equations; the interface is placed at vt/v ._ 35 - 36.
Although k is solved by using the same transport equation in both the layers, the
dissipation rate e comes from an algebraic expression within the buffer layer and from
a transport equation in the outer layer.

2.1 The damping functions

The damping functions selected in the various formulations may be found in table 1,
whereas table 2 gives all the selected forms for the extra terms D, E, II. Most of the
models have a set of damping functions closely related to the Van Driest expression
for the mixing length, L:

L = y (1- e-Y+ l 2_)

where y+ is

y+ = u_ y Re (6)

The turbulent Reynolds numbers based on y, Ru = vrk y Re, or Rt = k?/___ are also
used to mimic effects of the wall. In nearly all the formulations under investigation
the decay of the dissipation rate is governed by the exponential function f2 proposed
by IIanjalic and Launder[7], according to which c2 has a finite value at the wall. The

sp formulation needs an additional function to further damp the value of c2 in the
wall region (see ref.[25]). The empirical constant ct is left unchanged all the way to
the wall in all the formulations with the exception of lb where, since no extra terms
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Table 2: Extra terms in the LR forms

are added in both k and e, the production of dissipation rate must be damped in
order to balance the e equation at the wall.

The choice of the damping functions depends on the limiting behavior of turbu-
lence near the wall. A correct formulation should fulfill the following relations:

U=o(y) k=o(y _) e=o(1)

= o(y_-) _ = o(y_) _ = o(ys)
together with a negative slope of the dissipation rate in the wall region. The two

equation model proposed by Shih[23] matches the limiting forms remarkably well,
but suffers numerical problems caused by L In sh the decay of dissipation rate is

- *_A_ (_)

which is of o(1) at the wall. The turbulent viscosity is computed as

kS

,,_= c. f. R_ _- (8)

in which the damping function fu is based on a fourth order polynomial of y+. The
g, needed in equations (7,8), is computed as

2kRe

This expression gives 7 = o(y 2) at the wall. To avoid the convergence problems caused
by unphysical overshoots of the second term on the right hand side of (9) near the
wall (which causes negative dissipation rates), the ms model defines _ as

= eL (10)



where the fc function depends on the turbulent Reynolds number, Rt = _-_:

I, = f(Re)= 1- e p(-v i)

At the wall, Re = o(y 4) so that the function f, is o(y2). Equation (10) prevents

negative dissipation rates, and makes _ = o(y 2) at the wall. The f_ function is
designed to give ff ._ e for y+ _ 6.

Table 1 shows that all the LR forms, with the exception of jl and ms models,
use damping functions for _t based on y or y+, while f2 is based on Re. The use
of y+ as the exponent of the damping functions gives unphysical results in the case
of stagnation points. In fact, the definition of the friction velocity u._ appearing in
equation (6) is:

V P

Two_' -- # (0-_nU)wa,,

where n is the direction normal to the wall. At separation and reattachment points

and y+ _ 0 regardless of the value of y. This implies that f_ is zero all along the flow
section making the viscous layer thickness unphysically unbounded. There axe several
known tricks to overcome this problem, like relating u_ to the k peak in the viscous
layer via the wall function for the turbulent kinetic energy, or replacing the velocity
gradient by the maximum value of the vorticity w in the cross flow direction. While
these and other tricks remove the singularity, they are both arbitrary and potential
sources of inaccuracies. Moreover, a general turbulence model should not require

information about the flow domain geometry, like the wall distance. The authors[17]
have shown that, although the replacement of y+ is not an easy task, it is possible
to use the ratio RL of the turbulence length scale L and the viscous length scale L_
defined as

L- k] _ L

- T f-_RL=__ (11)L_- _ L_- [Vl

RL approaches zero at the wall because L --, O, L_ --_ _, and reaches asymptotically
a maximum in the log-law region. In the wall region the following limiting forms hold:

L o(y 3)

} RL = o(y4)V : o(y)

1

Accordingly, the exponent of the damping function must be RL to give f_ = o(y) at
the wall. The final form of f_ is:



in which c_,1 and %2 are two empirical constants. The application of ms to a fully

developed channel flow[17] showed a much better agreement with DNS than the jl
model. For any further detail about the models, the reader is referred to the original

bibliography.

3 The implicit factored solver

The strong non-linearities usually associated with the LR forms require a robust
implicit solver to avoid stringent stability limits. Among the several possibilities,
the implicit approximate factorization by Beam and Warming[2] proved adequate for
implementation in complex flows[15]. To take full advantage of the implicit time
marching procedure for incompressible flows, the mass conservation equation, that
does not contain time derivatives, has been modified according to the artificial com-
pressibility approach originally developed by Chorin[5]. The corrected form of the

continuity equation reads:
10p OU_

in which p = pw is an artificial equation of state and w is the artificial compressibility

parameter. The formulation ensures mass conservation only when a steady solution is

reached and, consequently, 0p -. 0, thereby making it impossible to follow a physicalot
time transient.

In two dimensions, the artificial compressibility, momentum, and transport equa-
tions for e and k may be written in vector form:

OQ OE¢ OF¢ OE_ OF,,
Ot + _z + -Oy==-O-z + _y + H (13)

where the unknown vector is Q = (p, U, V, e, k) T, Ee, Fe are convective terms, E,j, Fv
are diffusive terms, and H gathers the sink-source terms. The full forms of the
linearization for the artificial compressibility algorithm may be found in ref. [15]. In
order to be able to cope with any geometry, the transport equations are discretized in

a generalized curvilinear nonorthogonal coordinate system. The differencing stencil
is

0 0

: +
where zl are the 2 - d cartesian coordinates and _, 7/are the 2 - d curvilinear coordi-
nates. Fluxes are computed by using conservative centered finite differences.

The implicit factored solver for a system of partial differential equations is based
on a time linearization of the spatial operators. Since the artificial compressibility
precludes following a physical time transient, the approximate factorization is imple-
mented in its one step version that is first order accurate in time. The final form of
the factored solver is

{( [ +.,! o RI, I + OAt -a_Hj + o4 o_2 jj " AQ* =RHS

O(B+T-r_ 02Tl_ AQ = AQ*(I + OAt [-c_,THj + _- - o;_ j] "

(14)



in which RHS = At (-°E-_ -- _ + _ + _ + H) A,B are the convective Ja-
Oz Oy Oz Oy . '

cobians, R, T are the diffusive Jacobians, Hj is the source Jacobiaa, and AQ =
%

Qt+t _ Qt. The solution process requires the direct inversion of block tridiagonal
matrices.

Particular attention was devoted to the local time step formula. A conservative
expression was obtained by computing the eigenvalues A of the convective Jacobian:

A ( continuity)
a =Ua

A(d_-r"°_e'_t=r_) : Ud + a,o • Ra

A (_-'_°_e't='_) = Ud - ao, • Ra

where RZd = d_ + d_, Ud = (U d:, + V du) is the unscaled contravariant velocity,

(d = _ or _7), and a_, is an artificial speed of sound defined as

The local time step formula is:

CFL

At = U_ + U, + a_(R_ + R,,) (15)

Equation (15) proved adequate for both N - S and k - e with CFL varying in
the range 5 - 15. No artificial damping terms are added to the right or left hand
side. Any stability or pressure-velocity decoupling problem was solved by refining the
computational grid or lowering the CFL in (15).

The time marching procedure updates the flow variables, p, U, V by solving the
artificial compressibility equation. The k - ¢ equations are solved one at a time

decoupled from the flow variables. In this manner the k - e solution lags one time
step with respect to the N - S equations.

4 Linearization of source terms

The Hj Jacobian of the source term vector H, that appears in equation (14) is defined
as

OH

Hi: OQ

While the derivation of the convective and diffusive Jacobians is a straightforward
exercise, the choice of the linearization of H may play a significant role in the ro-
bustness of a turbulent flow solver. H can not be treated in a fully explicit way and,

to maintain the stability of iterative procedure, it must be properly linearized. Hj is
usually introduced in the sweep associated with the largest gradients, but in elliptic
flows this direction is not always unique, so that it was found convenient to introduce
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Table 3: Approximate source Jacobian

it in both the sweeps according to the directional weights a in equation (14). Typical
values of a are 1 - 5.

The source Jacobian Hi, if negative, improves the algorithm robustness by in-
creasing the diagonal dominance of the tridiagonal block matrix. This observation
indicates that the optimal form of Hj is not necessarily the exact differentiation of
H, that may have positive and negative contributions, but an approxilnate form that
is always negative. Possible numerical problems may be also caused by overshoots of

Hi. In fact the tridiagonal matrix given by equation (14) is

A_-I • AUi_I + (Hi + Ai). AUi + Ai+t • AUi+I = RHS_

If Ha. >> A and Ha. >> RHS, AU --+ 0 regardless of the value of RHS. This may

unphysicaUy freeze the local solution.
After intense numerical testing, we found it convenient to compute H a• dropping

the positive terms. To prevent possible over- or under-shoots only the leading terms
in the viscous layer were retained. They have been determined by substituting in
k, •, U their limiting forms at the solid boundary for each model. The linearization
for the ten models may be found in table 3. The analysis of the source Jacobians of
the formulations showed that all the models used in this paper have the same degree
of the robustness with the exception represented by the lb model for which serious
numerical problems were encountered.

5 Turbulent flow past a hill

The aforedescribed models have been compared for a fully developed channel flow
[17]. The computed results showed significant discrepancies among the models and
only few of the formulations proved to fit with the DNS data at Re = 3300. The very
low Reynolds number and the simple geometry used for testing indicated that further
investigation is necessary to verify the model performances in a complex geometry at
very high Re, as often encountered in engineering applications.



grid # I points I st I

2 I125× 12111.o7j
3 _221×121 107 i__i1:07,

Table 4: Grids (st:stretch ratio)

For incompressible two:dimensional flows with streamline curvature there are only
a few valuable experimental data sets. Among these we chose the flow past a circular

hill[l]. In this test an incoming boundary layer experiences a short region of concave
curvature with adverse pressure gradient, prior to encountering a long region of con-
vex curvature in which the pressure gradient reverts to favorable and then becomes
adverse. At this point the measurements detect a small separated region downstream
of the hill in correspondence to a short convex curvature of the lower boundary. This
experiment provides an interesting opportunity to test the turbulence models in a
mixed adverse-favorable pressure gradient condition. The flow approaches the hill
with a thin boundary layer (_ = 55.7 rnm). The reference velocity U,.et is approx-
imately 20 re�s, which gives a Reynolds number based on the hill curvature radius
(= 1284 turn) approximately equal to 1.4.106.

The measurements include the skin friction coefficient, c f, obtained by the Clauser
chart and the Preston tube all along the hill together with the wall static pressure
distribution, &. The two methods used to determine cf did not give significantly
different results.

The mean velocity, turbulent normal and shear stresses are measured in ten dif-

ferent sections along the hill. The mean velocities are measured by a Pitot tube
accounting for displacement effects in the wall proximity. The turbulent stresses are
measured by using normal and cross hot-wires. The cross sectional measurements are
interrupted very close to separation: this prevents a detailed comparison in the region
well inside the recirculation.

The computations have been carried out using the three grids summarized in table
4; figure 1 shows grid number 2. The stretch ratio st is defined as the ratio of two
consecutive grid cell heights in the cross flow direction.

The grid height was twice the hill curvature radius to minimize the effect of

the upper boundary on the solution, where a zero normal gradient condition was
implemented. On the exit boundary, a zero gradient condition was found adequate
provided that the computational domain was extended sufficiently downstream of the
hill.

Because of the incoming boundary layer and the large Reynolds number, grid
number 1 allowed placing the first grid point away from the wall at y+ _ 9, while
with grids number 2 and 3 the points were more clustered at the wall to give y+ _ 1.
Grid 3 was introduced to check whether a stronger mesh refinement could bring about
further changes in the computed results. The computations showed that the converged
results obtained with grid 2 were nearly indistinguishable from those obtained with
grid 3, so that all the final calculations were carried out with grid 2.

The mean velocity and turbulence quantities at the inlet section of the compu-
tational domain were specified according to the experimental profiles at s = 596.
An attempt to use a fully developed flow inlet condition revealed the extreme sen-
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sitivity of the computedresults to the incoming profiles. When the inlet boundary
layer thickness or the turbulent kinetic energy did not match with measurements, the

computed profiles were far off from experiments. Figure 2 shows the computed tur-
bulent viscosity levels at X = 1990 mm for both the fully developed and experimental
inlet conditions. The vt profiles differ by approximately one order of magnitude im-
mediately outside of the buffer layer. This observation shows the stringent need for

detailed inlet conditions to perform a meaningful computation.

5.1 Wall static pressure

First let us look at the static pressure, Cp, along the lower side of the computational
domain. Figure 3 gives the computed Cp using grids 1 and 2 with various models.

The ch model shows a good fit with experiments in the adverse pressure gradient

(apg) region corresponding to the positive peak in Cp. The peak is well captured by
both the grids. The same degree of accuracy is maintained all along the favourable
pressure gradient (fpg) region. When the gradient reverts to positive the two grids
start to give different results. The coarse grid generally produces larger recirculations
with a moderate pressure recovery downstream of the hill, but it completely fails
to reproduce the other flow variables, whereas the refined grid number 2 predicts a

stronger pressure recovery than that shown by experiments. Nearly all the models
gave a shorter and thinner recirculation with the refined grid as compared to the
coarse one. This is somewhat surprising, but the converged results clearly showed

that a large reversed flow region was detected by using the coarse grid number 1
together with very thick boundary layers in contrast with experiments in which the

boundary layer remains quite thin. The same excessive pressure recovery was also
found by Kim[8].

The lb model seems to follow the experimental Cp distribution quite closely and
dearly predicts the static pressure drop in the large separated region downstream of
the hill. The grid independence is quite remarkable. Unfortunately this model caused
serious numerical problems and the results with both grids 1 and 2 are only partially

converged.
The nh model is very similar to the jl formulation. However, the two formulations

give results considerably different for a fully developed channel flow at moderate Re.
Figure 3 shows that the differences between the models fade out for a high Re flow
provided that a refined grid is used. In fact when using a coarse grid the inaccuracies
in the k and e profiles directly affect the turbulent viscosity distribution via the fu
function based on Rt. The same effect is clearly smeared when using fu based on y+
which is much less sensitive to the local turbulent flow field. The differences between

the coarse and the refined grid are larger in the adverse pressure gradient region in
which the flow is likely to encounter the largest gradients. The direct comparison
of these two models shows that, even if the replacement of the damping functions
based on y+ is desirable, the use of Rt introduces a strong mesh dependence and the
use of a very refined grid becomes compulsory to obtain a reasonable static pressure
distribution (typically, the first grid point away from the wall must be placed at
y+ _ 1, as in grid 2, to have grid independent results).

The q-w model introduced by Coakley, co, was found to give a poor fit with DNS
of a channel flow[17]. Nevertheless, it succeeds in giving a satisfactory agreement with

11



the measured flow past a hill. The model appears to be very grid sensitive on account

of the differences in the static pressure distribution in both the apg regions. The

main reason for this is again the damping function fu which is based on R u. As in
the jl model, if the peaks of k and • are not properly resolved, the inaccuracies will

be felt also in the damping of the turbulent viscosity with large effects on the mean
flow field.

The sp model fits remarkably well the experimental static pressure coefficient

until the separated region is approached. Moreover the model seems relatively grid
independent until the strong apg is reached. At this point sp behaves like the other

formulations. The pressure recovery in the separated region is still too large, and,

when comparing this model with the other LR forms that use the wall distance y, it

is evident that sp does not bring about any considerable improvement.

The sh and ms forms are very similar and, when using the refined grid, the

static pressure profiles are nearly indistinguishable. The introduction of the pressure
transport term H does not seem to play a significant role in the determination of the

static pressure. For these two models the effect of the damping function f_ based on

y+ or Rt is even more evident. Let's recall that in sh the f_, function is based on

a fourth order polynomial of y+, while ms uses a complex function of the turbulent

Reynolds number. Since f_ appears in both the turbulent viscosity formula and the

pressure transport term, the ms model will be very grid dependent for the same reason

that jl was found to be grid dependent. This feature of ms was not highlighted in

the channel flow computations [17] because of the much less stringent mesh points
requirement.

The two-layer models give results that are somewhat less grid sensitive than the

other formulations. This is partly due to the algebraic dissipation rate equation in the

wall proximity, which, if solved by a transport equation down to the wall, appears to

have more stringent mesh requirements. Nevertheless ro and ki predictions are very

similar to the other models in the first apg and flag regions. Again, differences start

to appear in the strong apg region prior to separation. Here, while ro shows a notable

difference between the two grids, ki gives profiles remarkably grid independent. It
seems that the two scale model serves to relax the grid requirement.

5.2 Skin friction

The skin friction coefficient, nondimensionalized with respect to the free stream dy-

namic pressure, exhibits a peak approximately corresponding to the top of the hill.

It reverts to negative values downstream of the hill in the short region with con-
vex curvature where separation takes place. The plots report only the skin friction

coefficient, CI, computed with the refined grid number 2.

The form of the friction velocity u_ to be used in the damping functions based
on y+ is of primary importance for the skin friction coefficient. To avoid numerical

problems caused by sudden changes in the turbulent viscosity, the friction velocity

(mentioned in section 2.1) was related to the peak of turbulent kinetic energy closest
to the wall via the standard wall function for k

u_ _ I kma_ vf-C_

12



Small convex curvature can produce a significant reduction of the skin friction
coefficient, whereas a concave curvature causes an increase in C 1. In the present

case, the ratio 8/R, where R is the local curvature radius, is above 0.01 so that the
curvature effect gives strong changes in the skin friction.

Figure 5 reports the comparison between the measured and computed distribu-
tion. The ch formulation shows a satisfactory agreement with the experimental data

in both the apg and fpg regions. In the first apg region ch seems to reproduce the
measurements quite well. The sudden inversion from apg to fpg gives a very thin
boundary layer together with a dramatic increase in the skin friction. The behavior

of C! quite closely resembles that of the static pressure coefficient. The peak in C 1
is located approximately at the static pressure minimum prior to inversion to apg.
The separation point is not fixed by geometrical constraints and it results from the
local boundary layer thickness and pressure gradient. The general tendency of the
models was to locate the separation point downstream of the measured one which

is at X! exv) _ 2095 ram. ch locates the separation at X, _ 2155 ram. The profile
given by lb is far from the experimental results. Moreover lb locates a short recircu-
lation upstream of the hill corresponding to a strong decelerated region at the static
pressure maximum in contrast with measurements where no separation is detected.
Nevertheless, the lb results, because of the aforementioned numerical problem, are

only partially converged.
The jl and nh models give similar results. The separation point is located by

both the models at X, _ 2170 ram. The direct comparison of the two models allows

evaluating the effect of the damping function f, based on Rt or on y+. The low Re
calculations of reL[17] showed that the fv damping form selected in ]I was suited only
for high Re flows. In fact, in this test, it appears that the boundary layer is properly
predicted together with the shape of the skin friction coefficient. On the other hand,
the damping function in nh which requires y +, does not perform as well as the one

in jl, especially in the fpg region.
The formulation proposed by Coakley (co) is the only one that does not detect any

reversed flow downstream of the hill. The DNS comparison for the channel flow[17!
showed that co clearly overestimates the turbulent viscosity all along the cross section.
This ends in producing excessive momentum diffusion and less or no separation at all.
The sp model follows the measurement remarkably well in tile fpg region and locates
the separation point at approximately X, _ 2150 ram. sp responds to apg with a
dramatic drop in the skin friction. While this behavior is qualitatively correct, the

C! drop in both the apg regions is steeper than the experimental drop. This feature
is in contrast with all the other models in which there is a tendency to closely follow
the experimental skin friction.

The two formulations that account for the pressure transport term, II, behave

differently on account of the selected form of the damping function fv. While sh gives
probably the best agreement with experiments, ms overestimates the skin friction
peak by approximately 5%. The pressure transport term is more important in apg
and, in fact, sh and ms seem to give an improved fit with experiments as soon as the
pressure gradient reverts from favorable to adverse. The introduction of the pressure
correlation in the transport of the turbulent kinetic energy proves here to have a
beneficial effect on the prediction. Although further testing is necessary to draw a
final conclusion, it seems that the modeling oflI as a turbulent kinetic energy diffusion
is appropriate at least for this class of flows.
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model---} ch jl nh co sp ki ro lb sh ms

u 1 1 1 1 1 1 1 1 1 1

uiuj 3 3 4 4 3 3 3 4 3 [3

k 2 2 12 2 2 [2 2 2 2 12

Table 5: Exponents of the wall limiting forms.

For the two-layer models the effect of the matching criteria on C! was investigated.

Figure 6 shows the interface distance from the wall for both ro and ki. The two
models predict different turbulent viscosity levels in the buffer layer. In fact, while the
automatic matching criteria was vt _ 36 for both models, this value of the turbulent
viscosity is reached at a larger distance from the wall by hi than ro. Nevertheless,
the difference is at most 0.1% of the hill curvature radius. Moreover this difference

seems to be constant all along the hill shape and it qualitatively resembles the shape
of the wall static pressure for both the models. The ro formulation fails to predict
separation when fixing the matching point in the computational domain according to
the experimental inlet profiles. Conversely, the separation point is remarkably well
predicted at X, _ 2095 ram when letting the model adjust the matching level at vt
36 in accordance to the locally computed turbulent viscosity. The ro formulation has
already proved to give larger separation bubbles with respect to other LR forms[14],
and this test confirms this tendency. The reason for this is probably that in ro the
dissipation rate is computed by using the Norris and Reynolds algebraic expression
within the buffer layer which gave better results than the standard k - e model in

apg[22]. The results given by hi are similar.

5.3 Cross sections

In order to provide a complete view of the model performance, the mean velocity, tur-
bulent kinetic energy, and turbulent shear stress profiles are reported in five different
cross sections. The location of the five sections may be found in Fig.1. The results

reported in this set of plots refer to grid number 2 only.
In table 5 all the ten models show similar limiting forms at the wall for the mean

velocity and turbulent kinetic energy. Conversely_ the turbulent shear stress modeled
by nh, co, and lb is o(y 4) at the wall, whereas the other models show o(yS).

Figure 7 reports the mean velocity profiles at the aforementioned five cross sec-
tions, while figures 8 and 9 show the turbulent shear stress and the turbulent kinetic
energy respectively. The plots show a closeup view of the region close to the wall
since the flow variables were nearly flat in the outer part of the domain.

The first section at z = 596 mm is not of particular interest since the disturbance

given by the presence of the hill is not yet felt. Nevertheless, all the models agree with
experiments within a narrow range, especially for velocity and turbulent shear stress

profiles. It is observed that there is no uiuj inversion and that the turbulent shear
stress reaches zero at Y ,_ 60 for all the models. The computed turbulent kinetic
energy is underestimated by all the models.

The second section at X = 1183 mm is of much more interest since it is located

near the pressure gradient inversion immediately downstream of the beginning of
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the long convexregion. Both ch and Ib fit the measured velocity profiles which
show a very thin boundary layer caused by the presence of the obstacle, jl and nh

seem to overestimate the boundary layer thickness. (jl produces a much stronger
overestimation of the boundary layer thickness than nh).

The strong reduction of the boundary layer thickness results in a large mean strain
in the viscous layer. This can be seen in the peak of the turbulent shear stress and

turbulent kinetic energy located in the wall proximity, jl and nh show a strong k
overshoot that is not found by the other models. In checking every single model term,
this behavior appeared to be caused by the selected form of the extra destruction rate,
D, that is proportional to the square of the turbulent kinetic energy gradient as follows

( Ov_ _ (i6)

Equation (16) seems to produce k overshoots in fpg regions.
The third cross flow section, at X = 1469 mm is well inside the .fpg region. With

respect to the previous section the growth of the boundary layer is evident even ff
the overall velocity prone seems to be only weakly affected. The reduction of the

turbulent shear stress is well predicted by all the models, jl and nh give overshoots
in k and _ii/], and qualitatively behave as in the previous section.

When moving to the fourth and fifth sections at X = 1862mm and X = 1990ram
respectively, differences between the model predictions start to be more evident. In
these sections the flow encounters a much stronger apg than that found before section
2. The predicted velocity profiles are in good agreement with measurements for

nearly all the models. Neverthehss the velocity profiles predicted by sh and ms seem
to be in slightly better agreement with experiments than those predicted by using the
other models, especially at the edge of the boundary layer. All the models tend to
overestimate uiuj although the shape of the measured turbulent shear stress is well
predicted.

5.4 Numerical details

Sections 3 and 4 give some details about the solver structure that was left unchanged
for all the models. In the calculations the turbulence field was implicitly updated at
the end of every implicit N - S sweep. No advantages were found in updating k and
• after a fixed number of N - S sweeps. The computations were carried out on the

Cray YMP computer at NASA Lewis Research Center. Converged results with the
125 × 121 grid were obtained after 2000 iterations in ._ 500 - 600 seconds. The slow

convergence rate was caused by the lack of numerical damping terms and by the grid
cell aspect ratio that reached several thousands.

The only LR form showing serious numerical instabilities was lb. The proposed
linearization for the source terms, while preventing the code from blowing up, did not
achieve the overall residual of the order of 10 -6 - 10-7 that was requested for all the
other models.
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6 Concluding Remarks

The comparison of ten different LR two-equation models in a complex geometry
shows the limits of these models. Despite the improvements in channel flow pre-
dictions (highlighted in a previous investigation[17]) introduced by the use of the
low-Reynolds-number corrections to the high-Reynolds number two-equation model,
problems occur when trying to model flows with strong pressure gradients and stream-
line curvature. The large differences among the model predictions for a simple channel

flow at a moderate Reynolds number seem to fade out in such a complex geometry.
The reason for that is not very clear. This may be, in part, due to the very high
Reynolds number that reduces the overall influence of the LR model corrections, sh,
and consequently ms, attempts to introduce an extra model term which is the pres-
sure correlation II in the k equation. The skin friction coefficient seems to be the
only quantity affected by II in response to the pressure gradients and the other flow
variables appear to be only marginally influenced.

In addition, the ms model does not explicitly depend on the wall distance and
yields comparable results with the best of the other two-equation models. This indi-
cates its promise for modeling of complex turbulent flows.

When using a single solver to carry out calculations with different LR models the
differences in the predictions must be attributed only to the model formulations. Con-

sequently, the present set of tests gives some understanding of the model discrepancies
that were hidden behind purely numerical differences.
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Figure 8: Cross sections: turbulent shear stress
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